正品朗格m3手机_正品朗格m3手机多少钱

ysladmin 2024-06-13
正品朗格m3手机_正品朗格m3手机多少钱

       希望我能够为您提供一些与正品朗格m3手机相关的信息和建议。如果您有任何疑问或需要更深入的解释,请告诉我。

1.你们的循环水怎么处理的,8T/h,10-15度水温.分两级处理么?QQ540806157

正品朗格m3手机_正品朗格m3手机多少钱

你们的循环水怎么处理的,8T/h,10-15度水温.分两级处理么?QQ540806157

       1、 冷却水系统

       用水来冷却工艺介质的系统称作冷却水系统。冷却水系统通常

       有两种:直流冷却水系统和循环冷却水系统。

       1.1 直流冷却水系统

       在直流冷却水系统中,冷却水仅仅通过换热设备一次,用过后水就被排放掉,因此,它的用水量很大,而排出水的温升却很小,水中各种矿物质和离子含量基本上保持不变。

       1.2循环冷却水系统

       循环冷却水系统又分封闭式和敞开式两种。

       1.2.1 封闭式循环冷却水系统

       封闭式循环冷却水系统又称为密闭式循环冷却水系统。在此系统中,冷却水用过后不是马上排放掉,而是回收再用。

       1.2.2 敞开式循环冷却水系统

       敞开蒸发系统是目前应用最广、类型最多的一种冷却系统。它也是以水冷却移走工艺介质或换热设备所散发的热量,然后利用热水和空气直接接触时将一部分热水蒸发出去,而使大部分热水得到冷却后,再循环使用。因此,这样的系统也称敞开循环冷却水系统。根据热水和空气接触方法的不同,可以分成很多类型。敞开循环冷却水系统的分类见表一。

       表一 敞开蒸发系统的分类

        自然冷却塔

       冷 却 池

        喷淋冷却池

        喷水式

       敞 开 放 式 横流式

       开 点滴式

       蒸

       发 自然通风

       系 点滴式、薄膜式

       统 风 筒 式

        喷水式、点滴薄膜式

       冷

       却 点滴式

        塔 薄膜式 逆流式

        鼓 风 式 喷水式

        点滴薄膜式

        机械通风 点滴式

        横流或逆流式

        薄膜式

       抽 风 式 喷水式

        逆流式

        点滴薄膜式

       冷却水由循环泵送往系统中各换热器,以冷却工艺热介质,冷却水本身温度升高,变成热水,此循环水量为R的热水被送往冷却塔顶部,由布水管道喷淋到塔内填料上。空气则由塔底百页窗空隙中进入塔内,并被塔顶风扇抽吸上升,与落下的水滴和填料上的水膜相遇进行热交换,水滴和水膜则在下降过程中逐渐变冷,当到达冷却水池时,水温正好下降到符合冷却水的要求。空气在塔内上升过程中则逐渐变热,最后由塔顶逸出,同时带走水蒸气。这部分水的损失称为蒸气损失E。热水由塔顶向下喷溅时,由于外界风吹和风扇抽吸的影响,循环水会有一定的飞溅损失和随空气带出的雾沫夹带损失。由于这些损失掉的水,统称为风吹损失D。为了维持循环水中的一定的离子浓度,必须不断向系统中加入补充水量M和系统外面排出一定的污水。这部分水量称为排污损失B。

       冷却塔的种类很多,按照塔的构造和空气流动情况来区分,有自然通风冷却塔和机械通风冷却塔两大类。按照空气与水在塔内的相对流动情况,又可分为逆流式和横流式。有关各种类型冷却塔的结构和特点,可参阅有关的参考文献。机械通风冷却塔冷却效果最好。设计中应综合考虑循环比,其应在3~5倍为宜。

       2、 浓缩倍数

       循环冷却水的浓缩倍数是该循环冷却水的含盐量与其补充水的含盐量之比。

       提高循环冷却水的浓缩倍数,可以降低补充水的用量,从而节约水资源;还可以降低排污水量,从而减少对环境的污染和废水的处理量。此外,提高浓缩倍数还可以节约水处理剂的消耗量,从而降低冷却水处里的成本。但是,过多地提高浓缩倍数,会使循环冷却水中的硬度,碱度和浊度升得太高,水的结垢倾向增大很多,从而使结垢控制的难度变得太大;还会使循环冷却水中的腐蚀性离子(例如Cl-和SO42-)和腐蚀性物质(例如H2S、SO2和NH3)的含量增加,水的腐蚀性增强,从而使腐蚀控制的难度增加;过多地提高浓缩倍数还会使药剂(例如聚磷酸盐)在冷却水系统内的停留时间增长而水解。因此,冷却水的浓缩倍数并不是愈高愈好,一般热电系统可控制5~8倍,化工、炼油2~4倍。

       2.1.1节水量与浓缩倍数的关系

       现在从节约水资源的角度看一下补充水量M占循环水量R的百分比M/R与浓缩倍数K的关系,以及每提高一个浓缩倍数单位时节约的补充水百分比(以占循环水量的百分比表示)

        M /R / K与浓缩倍数K的关系。

        为了有一个定量的概念,我们用下面的例题来说明。

       例题 设循环冷却水系统的循环量R为10000m3/h,冷却塔进口和出口的水温分别为42℃和32℃,试求浓缩倍数K分别为1.5~10.0时的补充水量M、排污水量B以及补充水量占循环水量的百分比M/R。

        解 现以K+2.0时为例进行计算;

       蒸发损失水量E=R?CP? t/r

       =10000×4.187×(42-32)/2401

       =174.4(m3/h)

       风吹损失水量(按0.05%R计)

       D=10000×0.05%=5.0(m3/h)

       总排污水量 Br=E/(K-1)=174.4/(2.0-1.0)=174.4(m3/h)

       排污水量 B=Br-D=174.4-5.0=169.4(m3/h)

       补充水量 M=E+Br=174.4+174.4=348.8(m3/h)

       式中 CP——水的热容量(比热)?kJ/(kg?℃);

       t——水的进口温度与出口温度之差,℃;

       r——水的蒸发潜热,kJ/kg ;

        K——水的浓缩倍数。

       现把K分别为1.5、3.0、4.0……10.0时的M、B、M/R和 M/R / K的计算结果列于表2中。

       2.1.2浓缩倍数的选择

       从表2中可以看到:

       随着循环冷却水浓缩倍数K的增加,冷却水系统的补充水量M和排污水量B都不断

       表2不同浓缩倍数下冷却水运行参数的计算值

        K

       计算项目 1. 0

       (直流水) 1.5 2.0 3.0 4.0 5.0 6.0 7.0 10.0

       冷却水的循环量R,m3/h

       进出口水温差 t,℃

       蒸发损失水量E,m3/h

       风吹损失水量D,m3/h

       排污水量B,m3/h

       总排污水量B/R,%

       补充水量M,m3/h

       排污水量占循环水量的百分比B/R,%

       补充水量占循环水量的百分比M/R,%

        M/R / K,%

       10000

       10

       0

       0

       10000

       10000

       10000

       100

       100

       —— 10000

       10

       174.4

       5

       343.8

       348.8

       523.2

       3.4

       5.2

       —— 10000

       10

       174.4

       5

       169.4

       174.4

       348.8

       1.7

       3.5

       96.5 10000

       10

       174.4

       5

       82.2

       87.2

       261.6

       0.8

       2.6

       0.87 10000

       10

       174.4

       5

       53.1

       58.1

       232.5

       0.5

       2.3

       0.29 10000

       10

       174.4

       5

       38.6

       43.6

       218.0

       0.4

       2.2

       0.14 10000

       10

       174.4

       5

       29.9

       34.9

       209.3

       0.3

       2.1

       0.09 10000

       10

       174.4

       5

       24.1

       29.1

       203.5

       0.2

       2.0

       0.06 10000

       10

       174.4

       5

       14.4

       19.4

       193.8

       0.1

       1.9

       0.03

       减少,因此,提高冷却水的浓缩倍数,可以节约水资源;

       但是,每提高一个浓缩倍数单位( K=1)所降低的补充水量的百分比 M/R / K则随浓缩倍数的增加而降低。例如:

       当浓缩倍数K由1.0提高到2.0时,补充水量M由10000 m3/h,降低到了348.8m3/h故有:

        M/R / K=10000-348.8/10000/(2.0-1.0)=96.5%

       当浓缩倍数K由2.0提高到3.0时,则有:

        M/R / K=348.8-261.6/10000/(3.0-2.0)=0.87%

       当浓缩倍数K由3.0提高到4.0时,则有:

        M/R / K=261.6-232.5/10000/(4.0-3.0)=0.29%

       当浓缩倍数K由4.0提高到5.0时,则有:

        M/R / K=232.5-218.0/10000/(5.0-4.0)=0.14%

       由以上的例子中可以看到:

       ① 在低浓缩倍数时,提高浓倍数的节水效果比较明显;但当浓缩倍数提高到4.0以上

       时,再进一步提高浓缩倍数的节水效果就不太明显了。例如把上述循环冷却水的浓缩倍数由4.0提高到5.0时,节约的水量仅占循环水量的0.14%。因此,一般循环冷却水系统的浓缩倍数通常被控制在2.0~4.0左右。

       ② 与直流冷却水相比,即使循环水的浓缩倍数比较低,例如仅为1.5倍,但此时补充

       水即可节约94.8%(100%—5.2%)。由此可见,从节约水资源的角度来看,把直流冷却水改造为浓缩倍数不太高的冷却水,就可以节约大量的淡水资源。因此,直流冷却水系统的改造与不改造(为循环冷却水系统)是大不一样的。

        敞开式循环冷却水的浓缩倍数可以通过调节排污水量或补充水量来控制。

       2.2 补充水量M(m3/h)

       水在循环过程中,除因蒸发损失和维持一定的浓缩倍数而排掉一定的污水外,还由于空气流由塔顶逸出时,带走部分水滴,以及管道渗漏而失去部分水,因此补充水是下列各项损失之和。

       2.2.1 蒸发损失E(m3/h)冷却塔中,循环冷却水因蒸发而损失的水量E与气候和冷却幅度有关,通常以蒸发损失率a来表示。进入冷却塔的水量愈大,E也就愈多,以式表示如下:

       E=a(R-B)

       a=e(t1-t2)

        式中 a — 蒸发损失率,%;

        R — 系统中循环水量,m3/h;

        B — 系统中排污水量,m3/h;

        t1、t2 — 循环冷却水进、出冷却塔的温度,℃;

        e—损失系数,与季节有关,夏季(25~30℃)时为0.15~0.16;冬季(-15~10℃)时为0.06~0.08;春秋季(0~10℃)时为0.10~0.12。

       2.2.2 风吹损失(包括飞溅和雾沫夹带)D(m3/h)风吹损失除与当地的风速有关外,还与

       冷却塔的型式和结构有关。一般自然通风冷却塔比机械通风冷却塔的风吹损失要大些。若塔中装有良好的收水器,其风吹损失比不装收水器的要小些。风吹损失通常以占循环水量R的百分率来估计,其值约为

       D=(0.2%~0.5%)R m3/h

       2.2.3 排污水损失 B(m3/h)B的大小,由需要控制的浓缩倍数和冷却塔的蒸发量来确定,其计算下面再讨论。

       2.2.4 渗漏损失 F (m3/h) 良好的循环冷却水系统,管道连接处,泵的进、出口和水池等地方都不应该有渗漏。但因管理不善,安装不好,则渗漏就不可避免。因此在考虑补充水量时,应视系统具体情况而定。故补充水量

       M=E+D+B+F

       3、排污水量 B(m3/h)

        排污水量B的确定与冷却塔的蒸发损失E和浓缩倍数K有关。可以通过下列物料衡算的办法,找出B和E与K的关系式。

        设循环冷却水系统中,除了有补充水加入和排污、蒸发、风吹、渗漏等损失外,再没有其他的水流或溶质加入或排出系统,那么整个系统在循环浓缩过程中,就可以对循环水中某些不受加热、沉淀等干扰的溶质(如Cl-、Na+、K+等)作物料衡算,得到下面的式子:

       MCM=ECE+BCR+DCR+FCR

        式中:CM — 补充水中某种溶质的浓度;

        CE — 水蒸气中某种溶质的浓度;

        CR — 循环冷却水中某种溶质的浓度;

        当系统中管道联接紧密,不发生渗漏时,则F=0;当冷却塔收水器效果较好时,风吹损失D很小,如略去不计,则上式可简化为

        E

        B=

        K-1

       因此循环冷却水系统运行时,只要知道了系统中循环水量R和浓缩倍数K,就可以估算出蒸发量E,排污水量B以及补充水量M等操作参数。控制好这些参数,循环冷却水系统的运行也就能正常进行。

       第二节 敞开式循环冷却水处理的重要性

       1、敞开式循环冷却水系统产生的弊端及问题

        冷却水在循环系统中不断循环使用,由于水的温度升高,水流速度的变化,水的蒸发,各种无机离子和有机物质的浓缩,冷却塔和冷却水池在室外受到阳光照射、风吹雨淋、灰尘杂物的进入,以及设备结构和材料等多种因素的综合作用,会产生比直流系统更为严重的沉积物的附着、设备腐蚀和微生物的大量滋生,以及由此形成的粘泥污垢堵塞管道等问题。

       1.1循环冷却水使用后的弊主要表现在以下五个方面:

       ①对于凉水塔周边污染物的吸收及累积;

       ②细菌及生物粘泥大量产生;

       ③金属腐蚀性急剧上升;

       ④泄露介质污染水系统进而造成全部冷却器管网的结垢或腐蚀;

       ⑤污染物不易消减。

       1.2敞开式循环冷却水系统产生的问题

       1.2.1沉积物的析出和附着

       一般天然水中都溶解有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。

       在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应:

        Ca(HCO3)2 CaCO3 + CO2 +H2O

        CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m?K),而钢材的导热系数为45 W/(m?K)。

       1.2.2设备腐蚀

       循环冷却水系统中,大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使

       用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。

       1.2.3冷却水中溶解氧引起的电化学腐蚀

        敞开式循环冷却水系统中,水与空气能充分地接触,因此水中溶解的O2可达饱和状态。当碳钢与溶有O2的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别发生下列的氧化反应和还原反应:

        在阳极区 Fe=Fe2+ +2e

        在阴极区 1/2 O2+ H2O +2e =2OH-

        在水中 Fe2+ + 2OH- = Fe(OH)2

        Fe(OH)2 Fe(OH)3

       这些反应,促使微电池中的阳极区的金属不断溶解而被腐蚀。

       1.2.4有害离子引起的腐蚀

        循环冷却水在浓缩过程中,除重碳酸盐浓度随浓缩倍数增长而增加外,其他的盐类如氯化物、硫酸盐等的浓度也会增加。当Cl-和SO2-4离子浓度增高时,会加速碳钢的腐蚀。Cl-和SO2-4会使金属上保护膜的保护性膜的保护能降低,尤其是Cl-的离子半径小,穿透性强,容易穿过膜层,置换氧原子形成氯化物,加速阳极过程的进行,使腐蚀加速,所以氯离子是引起点蚀的原因之一。

       对于不锈钢制造的换热器,Cl-是引起应力腐蚀的主要原因,因此冷却水中Cl-离子的含量过高,常使设备上应力集中的部分,如换热器花板上胀管的边缘迅速受到腐蚀破坏。循环冷却水系统中如有不锈钢制的换热器时,一般要求Cl-的含量不超过300mg/L。

       对于碳钢而言,S2-、油污、酸、碱的腐蚀是剧烈的,尤其是S2-引发的一系列生化腐蚀极易造成管道的大面点蚀穿孔,其对金属的腐蚀能力远大于Cl-、SO2-4等离子。

       1.2.5微生物引起的腐蚀

        微生物的滋生也会使金属发生腐蚀。这是由于微生物排出的粘液与无机垢和泥砂杂物等形成的沉积物附着在金属表面,形成氧的浓差电池,促使金属腐蚀。此外,在金属表面和沉积物之间缺乏氧,因此一些厌氧菌(主要是硫酸盐还原菌)得以繁殖,当温度为25~30℃时,繁殖更快。它分解水中的硫酸盐,产生H2S,引起碳钢腐蚀,其反应如下:

        SO2-4 +8H++8e=S2-+4 H2O +能量(细菌生存所需)

        Fe2+ + S2 -=FeS

        铁细菌是钢铁锈瘤产生的主要原因,它能使Fe2+氧化为Fe3+,释放的能量供细菌生存需要。

        细菌

        Fe2+ Fe3+ +能量(细菌生存所需)

       1.2.6微生物的滋生和粘泥

       冷却水中的微生物一般是指细菌和藻类。在新鲜水中,一般来说细菌和藻类都较少。但

       在循环水中,由于养分的浓缩,水温的升高和日光照射,给细菌和藻类创造了迅速繁殖的条件。大量细菌分泌出的粘液像粘合剂一样,能使水中飘浮的灰尘杂质和化学沉淀等粘泥附在一起,形成粘糊糊的沉积物粘附在换热器的发热表面上,有人称之为生物粘呢,也有人把它叫做软垢。

       粘泥积附在换热器管壁上,除了会引起腐蚀外,还会使冷却水的流量减少,从而降低换热器的冷却效率;严重时,这些生物粘泥会将管子堵死,迫使停产清洗。

       2、敞开式循环冷却水处理的重要性及优点

        如前所述,冷却水长期循环使用后,必然会带来沉积物附着、金属腐蚀和微生物滋生这三个问题,而循环冷却水处理就是通过水质处理的办法解决这些问题。这样做法的好处如下:

        ①稳定生产 没有沉积物附着、腐蚀穿孔和粘泥堵塞等危害,冷却水系统中的换热器就可以始终在良好的环境中工作。循环冷却系统由于能够有效地控制污垢的沉积和生长,保证了传热效率,污垢热阻值一般定为万分之三以下。良好的传热效率为延长生产周期创造了条件。国内外有很多管理水平较高的工厂可连续生产400天左右。

        ②节药水资源 一般合理利用的循环水可节药96%以上的用水量,循环水装置的投资6~12个月就可以得到回收。例如在日产千吨合成氨的工厂中,每小时直流冷却水的用量是22000米3。如果用循环冷却水,其补充水量一般只需550~880米3/时。因此,循环冷却系统节约了96~97.5%的用水量。

        ③减少环境污染 直流冷却水系统直接从水源抽取冷水用于冷却,然后又将温度升高了的热水再排放到水源中去。将废热带到水源中形成热污染,用循环水可减95%以上的热污染。

        ④节约钢材 提高经济效益;处理效果良好的化工企业冷却器一般使用寿命可达4~6年,远高于2~3年的一次水冷却器使用期限。

       ⑤减少设备的体积:热交换器的污垢热阻值若按千分之三设计时,其传热面积将比污垢热阻值,按万分之三设计时大数倍。因此采用循环冷却水系统可使热交换器体积缩小。这也就是为什么日产千吨的新氨厂比日产三百三十吨的老氨厂产量提高了三倍,而占地面积却减少了十倍的原因之一。热交换器体积减小还节约大量的钢材。

       ⑥循环冷却系统中投加缓蚀剂可以有效地控制腐蚀,降低了对热交换器的材质要求。

       第二章 循环冷却水系统中的沉积物控制

       第一节 循环冷却水系统中的沉积物

       1、沉积物的分类

       循环冷却水系统在运行的过程中,会有各种物质沉积在换热器的传热管表面。这些物质统称为沉积物。它们主要是由水垢(scale)、淤泥(sludge)、腐蚀产物(corrosion products)和生物沉积物(biological deposits)构成。通常,人们把淤泥、腐蚀产物和生物沉积物三者统称为污垢(fouling)。

       2、水垢析出的判断

        在实验室及生产现场我们常用LangLier指数判断水垢的形成趋势并相对应的作配方研究。

       前面曾经提到,最容易沉积在换热器传热表面的水垢主要是碳酸钙垢。当条件适宜时也会出现磷酸钙垢及硅酸盐垢。下面就这些水垢析出的判断作些介绍。

       2.1 碳酸钙析出的判断

       2.1.1 饱和指数(L.S.I.)

        碳酸盐溶解在水中达到饱和状态时,存在着下列动平衡关系:

        Ca(HCO3)2 Ca2+ + 2HCO-3 式1

        HCO-3 H+ + CO32- 式2

        CaCO3 Ca2+ + CO32- 式3

       1936年朗格利尔(Langelier)根据上述平衡关系,提出了饱和PH和饱和指数的概念,以判断碳酸钙在水中是否会出析出水垢,并据此提出用加酸或加碱预处理的办法来控制水垢的析出。

       早期水处理工作者曾有意让冷却水在换热器传热表面上结一层薄薄的致密的碳酸钙水垢,这样既不影响传热效率,又可防止水对碳钢的腐蚀。因此,朗格利尔提出:L.S.I.>0时,碳酸钙垢会析出,这种水属结垢型水;当L.S.I.<0时,则原来附在传热表面上的碳酸钙垢层会被溶解掉,使碳钢表面裸露在水中而受到腐蚀,这种水称作腐蚀型水;当L.S.I.=0时,碳酸钙既不析出,原有碳酸钙垢层也不会被溶解掉,这种水属于稳定型水。如以式表之,则可写成:

        L.S.I.=PH-PHs>0 结垢

        L.S.I.=PH-PHs =0 不腐蚀不结垢

        L.S.I.=PH-PHs<0 腐蚀

       ①计算饱和PH(PHs)的公式 根据电中性原则和质量作用定律,中性碳酸盐水溶液中,存在着下列关系:

        PHs=(9.70+A+B)-(C+D)

       式中 A 总溶解固体系数;

        B 温度系数;

        C 钙硬度系数;

        D M-碱度系数;

       ② 饱和指数的应用 通常设计部门对水质处理进行设计和确定药剂配方时,往往根据水质资料首先计算一下饱和指数,以判断水质是属于什么类型的,然后再考虑处理方案。

       除了朗格利尔(Langelier)指数外,1946年雷兹纳(Ryznar),发明了稳定指数(R.S.I);1979年帕科拉兹(Puckorius)发明结垢指数;

       上述四种指数均是针对碳钢材质,预测水中溶解的碳酸钙是否会析出,或者碳酸钙在水中是否会溶解而言,因此判断式中所谓腐蚀的实际含意并不是直接预测水的腐蚀性,而是指作保护层用的碳酸钙溶解后,碳钢直接裸露在水中,由电化学作用等原因引起腐蚀。如果材质是铝、不锈钢等合金则腐蚀问题就不会像碳钢那样突出。

       2.2 磷酸钙析出的判断

       在许多水质处理方案中,常在循环冷却水中投加聚磷酸盐作为缓蚀剂或阻垢剂,而聚磷酸盐在水中会水解成为正磷酸盐,使水中有磷酸根离子存在。磷酸根与钙离子结合会生成溶解度很小的磷酸钙沉淀,如附着在传热表面上,就形成磷酸钙水垢。因此,在投加有聚磷酸盐药剂的循环冷却水系统中,必须要注意磷酸钙水垢生成的可能性。

       莫日和 郭本广 孟尚志 张文忠

       作者简介:莫日和,1969年生,男,汉族,广东高州人,硕士,高级工程师,中联煤层气有限责任公司,油气井专业,从事钻探、排采工程技术及管理工作,北京安外大街甲88号,(010)64299374,13041082135,morh998@163.com

       (中联煤层气有限责任公司,北京 100011)

       摘要:本文从柳林地区地质及储层特征等技术层面上进行分析,采用数值模拟的方法,根据柳林地区不同地点不同的地质特性,设计了对应的排采设备及排采方案,尝试并使用了电潜泵、螺杆泵,游梁泵三种不同类型的泵,首次在该区试验采用丛式井组的煤层气生产方式,使该区的煤层气生产取得了历史上的突破,水平井产量超过了15000m3/d,直井最高产气量达到1800m3/d,应用情况表明,该排采工艺技术能较好地满足柳林地区煤层气井排采的需要,为该区大规模开采煤层气积累了宝贵经验。

       关键词:柳林地区 排采技术 排采效果 应用

       Brief Discussion About the CBM Well Dewatering Technology in Liulin area

       MO Rihe GUO Benguang MENG Shangzhi ZHANG Wenzhong

       (China United Coalbed Methane Corporation, Ltd., Beijing 100011, China)

       Abstract: This paper analyzed the geology and reservoir characteristics of the LiuLin Areas with the numeri- cal simulation method, according to the different geological characteristics in different locations of the LiuLin dis- trict, corresponding dewatering equipment, scheme and three different type of pumps was designed, including ESP, PCP and beam-pumping unit.As the first experimental test, the use of cluster coalbed methane production wells made a great breakthrough in the production history of the area.The production of the horizontal well exceed 15000 m3/d, and the highest production of a vertical Well reached 1800 m3/d.The application showed that the dewatering technology meet the dewatering needs of coalbed methane in the LiuLin area, and also accumulated the experience for the large-scale production of coalbed methane in the future.

       Keywords: Liulin area; dewatering technology; Dewatering results, application

       1 前言

       我国的煤层多属于低孔、低渗、低压,如何确定合理的工作制度以保证煤层气产出量的最大化就显得很重要了。排采的好坏往往决定着煤层气产量的大小,是保障煤层气井连续稳定经济排采的重要因素。煤层的渗透率比普通油气藏要低很多,如果排采制度选择不当,很容易给煤层造成伤害,使压裂裂缝闭合,严重时还会导致气井不出气。

       鄂尔多斯盆地东缘柳林示范区煤层气资源蕴含量大,煤层物性较好,针对其开展排采制度及设备的研究,形成一整套的烟煤储层排采制度与设备选型规范,是保障煤层气井连续稳定经济排采的前提,对整个柳林示范区形成商业化开采规模很有意义,同时针对该区块的研究对于中国中阶煤煤层气的开发也有很重要的意义。

       2 煤层气排采机理

       煤层气又称煤层甲烷,煤炭工业称之为煤层瓦斯,是在成煤过程中形成并赋存于煤层中的一种非常规天然气。这种天然气大部分(70%~90%)赋存在煤岩孔隙内表面上,少量呈游离状态存在于煤的割理和其他孔隙、裂隙中,对煤层气进行开采可以为工业和民用提供重要能源;同时也可以减少煤矿开采时的瓦斯爆炸事故[1~4]。煤层中天然裂隙或割理通常被水饱和,煤层气吸附在煤上。要采出煤层气,首先要让它从煤中解吸出来。只有排出足够的水,煤层压力降至煤的解吸压力后,煤层气的解吸才能开始。所以与天然气生产不同,煤层气在开始产气之前先要排出煤层中大量的水[5]。

       3 地质概述

       3.1 含煤地层与煤层

       本区块内发育煤层14层,其中山西组5层,自上而下编号为1,2,3,4(3+4),5号煤层;太原组9层,自上而下编号为6上,6,7,7下,8+9,9下,10,10下,11号。其中山西组的2,3,4(3+4),5号煤层,太原组的8+9,10号煤为主力煤层,(3+4)号煤层厚度0.04~6.05m,平均为2.81m。全区发育。煤层结构简单,局部含1~3层炭质泥岩或泥岩夹矸,夹矸单层厚度为0.05~0.50m。5号煤煤层层位较稳定,煤厚0~5.04m,平均厚为2.70m。8+9号煤煤层厚度为0.79~10.30m,平均厚度为5.11m,全区稳定。

       3.2 煤层吸附特征

       该区块内煤层变质程度较高,吸附能力较强。据区块内煤层气井山西组3+4号煤层的朗格缪尔体积为18.34~22.45m3/t,平均20.70m3/t,朗格缪尔压力为1.49~3.52MPa,平均2.27MPa;5号煤层的朗格缪尔体积为13.14~23.21m3/t,平均19.65m3/t,朗格缪尔压力为1.73~2.64MPa,平均2.36MPa;8+9(8+9+10)号煤层的朗格缪尔体积为16.10~25.54m3/t,平均22.48m3/t,朗格缪尔压力为1.27~3.18MPa,平均1.96MPa。平均朗格缪尔体积20.94m3/t,朗格缪尔压力2.2MPa。

       3.3 含气饱和度

       柳林示范点内煤的兰氏体积(最大吸附量)为18.34~24.43m3/t,平均为21.38m3/t。测试结果表明,煤储层的吸附能力是比较强的。煤层含气饱和度一般为60.22%~75.10%,平均为66.73%。柳林示范点的煤储层大部分处于欠饱和状态。

       3.4 渗透率

       山西组4(3+4)号煤层的渗透率在0.011~2.80mD之间,5号煤层的渗透率在0.06~2.26mD之间;太原组8+9+10号煤层的渗透率在0.005~24.80mD之间。平均渗透率为3.93mD。可见该区块煤层的渗透率相对较高,且变化范围较大,随煤变质程度及埋深的变化相关系不明显,各向异性及非均质性显著。

       3.5 储层压力

       该区块4(3+4)号煤层的储层压力为2.58~8.33MPa,平均为5.79MPa,压力梯度为0.46~1.12MPa/100m,平均为0.84MPa/100m;5号煤层的储层压力为2.92~8.41MPa,平均为6.01MPa,压力梯度为0.60~1.11MPa/100m,平均为0.83MPa/100m;8+9(8+9+10)号煤层的储层压力为3.31~7.46MPa,平均为6.47MPa,压力梯度为0.53~1.174MPa/100m,平均为0.85MPa/100m。可见该区块内储层压力较大,压力梯度一般小于静水压力梯度(0.98MPa/100m),为低压异常状态。

       3.6 区域水文地质条件

       区域主要含水层有奥陶系及石炭系灰岩岩溶、裂缝含水层;二叠、三叠系砂岩裂缝含水层;第三、第四系砂砾石(岩)孔隙含水层。

       奥陶系中下统的石灰岩、泥灰岩、白云岩厚度为400~600m。主要出露于煤田外围。奥陶系为浅海相沉积层,其中以上马家沟组岩溶发育程度最高,富水性最强,峰峰组次之,下马家沟组较弱。下统冶里组、亮甲山组一般岩溶裂隙不发育,富水性弱,但局部破碎带岩溶发育,富水性强。本层含丰富岩溶水,是区域性主要含水层。水型主要有NaH-CO3和NaCl型。该含水层上覆有较发育的泥页岩、铝土岩隔水层,离煤层距离较大,因此对煤层的影响较小。

       石炭系上统太原组灰岩岩溶、裂隙含水层由5层灰岩组成,总厚度约20m左右,出露范围小,岩溶、裂隙一般不太发育,岩溶以溶隙、小溶孔为主,且多被方解石充填,富水性较弱;区块东缘浅埋区一带,岩溶发育,呈蜂窝状,连通性好,接受补给容易,富水性较强。由于岩溶裂隙发育的不均一性,富水性在不同地点差别较大。水位标高在789.31~814.74m之间,水型多为NaHCO3和NaCl型,矿化度为1190~3210mg/L。

       3.7 煤层含水性

       柳林试验区煤层水来源受区域水文地质条件制约,主要有地表水和含水层水,断层水不发育。地表水源主要是三川河流水,在试验区东部上游区域,河水向煤系注入或渗透,对煤层水起到一定补给作用。区域含水层是试验区煤层水的主要来源,它的强弱决定了煤层水的大小。柳林地区生产井产水量变化很大,北部区块产水量很大,而南部区块产水量很小,大体上是北高南低,东高西低,与构造走向基本一致。南部地区煤层顶、底板皆为泥质岩,供水性差,渗透到煤层中的水极少。

       4 排采设备选型

       根据柳林地区煤层气特点,排采方式优选思路主要考虑以下三点:一是尽可能降低井底流压以便充分降低储层压力;二是考虑泵受气体影响等因素;三是确定煤层的供液能力。

       设备选用的方法是在生产工作制度中,选择多种排采方式。例如:区块南部低产水量或后期产水量较小的煤层气井,选用工作制度便于调整、液面比较好控制的变速调控抽油机、数控抽油机等[6]。而在北部区域,煤层气井产水量大供液能力强(通常日产水量大于100m3),前期考虑以排水为主,选择大泵来加强排水降压,通常采用螺杆泵、大直径游梁泵及电潜泵。

       4.1 游梁泵

       游梁泵(抽油机)生产较稳定,检泵周期长,技术、管理都比较成熟。但排量不能过高,且需考虑气体的影响因素。柳林南部杨家峪地区储层供水不足,产水量少,适合采用的就是游梁泵排采工艺,连续生产6个多月,目前泵况仍然良好。在国内众多煤层气勘探开发作业中,常用的排采作业方式是游梁泵排水采气工艺,应用效果非常好。在该区南部采用5型抽油机,能充分满足生产需要。

       4.2 螺杆泵

       螺杆泵主要由地面驱动装置和井下泵所组成。螺杆泵的优点是气体、煤粉、压裂砂对螺杆泵的影响相对较小,和游梁泵比较,螺杆泵成本低、安装简单、占地面积小,螺杆泵在生产时一般将吸入口下到煤层以下,这样可以使油管中尽量只产水少产气。它的缺点是投产初期,如地层煤粉过多会使螺杆泵卡死而造成抽油杆拧断,而且当扭矩较大时容易发生井下事故,检泵周期一般比较短。日产水量60m3/d以下,使用GLB600-23型即可,如果日产水量接近150m3/d,用GLB900-18型泵效果较好,如果超过150m3/d,就应该选用GLB900-23的泵。

       柳林北部地区产水量一般在50~200m3/d,因此在北部普遍采用螺杆泵,使用证明螺杆泵很好地完成排水采气任务。

       4.3 电潜泵

       当产量超过200m3/d可以考虑使用电潜泵,选择型号是具体看排量以及下泵深度,另外在大斜度的定向井中使用电潜泵可有效防止油管、油杆偏磨引起的油管事故。目前用到的电潜泵有QYB98-200/700,GQYB1M01-220/700,QYB98-300/700-N8三种。在北部区域,个别直井及水平井产水量较大,我们选用了电潜泵,在水平井中使用排液量达300m3/d,较好地完成了排水降压的需要。

       5 井下管柱及工具选择[7~8]

       (1)油管、油杆的选择,要满足载荷的需要,在北部产水量大的井中适用89mm的油管、22mm或25m的油杆(图1),在南部则适用73mm的油管和22mm抽油杆(图2)。

       (2)泵径的选择:要尽量满足排液时最大产液量的要求且泵径还不能选择过大,因为泵径越大则悬点载荷越大,对抽油杆及整个排采系统要求更高。柳林南部一般选用38mm管式组合泵,冲程选用2.1m,冲次1~1.5次/min,可以满足该区排量小于10m3/d施工的要求。

       6 排采制度的选择[9]

       合理的排采速度是煤层气高产的保障。如果排采速率过大,液面下降速度过快会使有潜力的煤层气井排采半径缩短、发生速敏效应、支撑剂颗粒镶嵌煤层、裂缝闭合现象来临较快、渗透率迅速降低,进而造成单井产气量低。如果排采速度过小,经济上又不能达到要求。我们借助ECLIPSE建立的模型,充分考虑压敏效应、速敏效应的影响。

       图1 螺杆泵井下管柱结构

       图2 游梁泵井下管柱结构

       通过模拟结果可知,随着降液速度的增加,峰值产量以及累计产量逐渐增加,最后趋于平缓。推荐3,4,5层采用每天降液面6m的速度,计算出来的结果符合杨家峪地区实际降液5~10m的情况。

       7 煤层气排采工艺技术的应用

       7.1 防气措施

       将泵放置到煤层以下。排水泵以下安装沉降式气锚或者螺旋式气锚。

       7.2 防煤粉措施

       泵以下安装绕丝筛管、沉砂管、“小泵慢抽”、“间歇式排采”时使用防砂卡泵(实心柱塞泵)。

       7.3 排采方案

       满足生产井排采技术要求,随井的动态变化作相应调整,初期采用定压排采,生产中定产排采。

       (1)将泵、计量流程调试至正常工作状态,排采尽量保持连续性。

       (2)确定解吸压力,根据解吸压力将排液分为三个阶段:

       初期排液阶段:开始排采,当液面降至解吸压力点以上200m左右时,主要是排水降液,降液速度可控制在不大于15米/天,此阶段大约需要1~2个月。

       稳定排液阶段:解吸压力点以上200m至煤层以上100m,此阶段可进一步降低排液速度,控制在每天5~10m,此阶段大约需要2个月。

       稳定生产阶段:煤层以上100m至煤层,此为稳定生产阶段,保证抽油机等设备平稳运行,液面稳定,以保障平稳连续产气。

       图3 丛式井组井眼轨迹

       7.4 丛式井组试验

       丛式井是在同一井场,钻探多个井眼的油气开发技术,其优点是节约用地、节约钻前工程投资,便于生产管理。针对柳林煤层气气探区地面多为高山林地及良田熟土的特点,在反复论证、试点、总结和不断完善基础上,大力应用大斜度井、水平井等井筒技术,试验推广应用丛式井组。应用丛式井的井组同场部署5口井(图3),每个井组修建一套废水池和清污分流系统,有效保护了耕地面积,有力推动公司向集约型、清洁型、节约型发展,全面提高投资综合效益。

       丛式井组的排采设备选用基本与普通直井相同,在井斜不大,产水量较低的情况下,选用游梁泵,如果井斜大于40°,就考虑选用电潜泵。在我们的井组中,4口井选用游梁泵,1口选有电潜泵。试验表明,选用的排采设备很好地完成了经久耐用和排水降压的目的。

       7.5 应用效果

       形成了一套适合烟煤的直井、水平井排采制度和工艺技术,排采效果好。在该区首次实现了水平井单井产量突破15000m3/d(图4),直井单井产1000m3/d以上,最高达1800m3/d(图5)。

       图4 水平井排采曲线

       8 结论

       (1)针对煤层气排采生产需要,展开了煤层气排采工艺技术的攻关、配套及初步尝试。形成了一套适合柳林地区不同地区、不同产层的排采设备及配套工艺技术。

       图5 直井排采曲线

       图6 丛式煤层气生产井组

       (2)根据煤层气井排采的特点,通过对柳林煤层气井的井下管柱及地面流程设计,引入无级数控抽油机、永久监测压力,较好地完成了排采的施工及资料录取的要求,为该区的大规模开发奠定了基础。

       (3)尝试了适合该区丛式井组(图6)的排采设备及工艺,为该区大规模应用丛式井组进行开发创造了条件,丛式井组占地少、易于管理、在地形复杂的柳林地区将会显著提高煤层气开发的整体效益。

       参考文献

       康永尚等.2008.我国煤层气井排采工作制度探讨,天然气地球科学

       钱凯,赵庆波,汪泽成.1999.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,50~61

       任源峰等.2006.煤层气井电泵排采工艺技术的研究及应用[J].中国煤层气,3

       王红岩,刘洪林,赵庆波等.2005.煤层气富集成藏规律[M].北京:石油工业出版社,44~67

       吴佩芳.2000.煤层气开发的理论与实践[M].北京:地质工业出版社,65

       许卫,崔庆田,颜明友,李庆章.2001.煤层甲烷气勘探开发工艺技术进展[M].北京:石油工业出版社,150~167

       姚艳芳.2001.煤层气井排采试气技术[J].油气井测试,10(4):77~79

       赵庆波.1999.煤层气地质与勘探技术[M].北京:石油工业出版社,2~158

       Palmer I D,Metcalfe R S,Yee et al.1996.煤层甲烷储层评价及生产技术[M].秦勇,曾勇泽.徐州:中国矿业大学出版社,4~68

       好了,今天关于正品朗格m3手机就到这里了。希望大家对正品朗格m3手机有更深入的了解,同时也希望这个话题正品朗格m3手机的解答可以帮助到大家。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权本站发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文